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Abstract

The ®nite strip method has successfully been applied for the calculation of the buckling load of sti�ened panels

in wing box structures. This article describes an implementation of the ®nite strip method that extends the scope

of the analysis of the determination of the post-buckling sti�ness of these panels. Ó 2000 Published by Elsevier

Science Ltd.
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1. Introduction

1.1. The panel problem

Wing box structures usually have very regular design features. The upper and lower panels are nearly
prismatic, the cross-sectional properties and the loading (axial compression) vary only slightly along
the wing, while the rib supports are often equidistant, placed perpendicular to the principal direction of
the loading. These particular characteristics o�er a natural and practical way to simplify the analysis of
these structures. The ``multi-bay panel model'' that is analyzed in this article is the outcome of this
simpli®cation.

The ``multi-bay panel model'' is a classical abstraction conceived for the study of the basic buckling
characteristics of wing panels. It corresponds to a structure, where a compression panel of the wing (of length
l), situated between two ribs, is imbedded on both ends in an in®nitely long structure of panels of identical
geometrical and material properties (Fig. 1). The in®nite array of panels is, thus, simply supported on
equidistant transverse ribs. The distance between the ribs l, equals the bay length of the panel in the actual
wing box. The geometry and material properties of the cross-section, which are uniform over the length of
the model are the averaged properties of the panel in the bay under investigation. This particular simpli-
®cation has been the subject of numerous elaborationÕs in the past (van der Neut, 1952; Benthem, 1959;
Przemieniecki, 1973; Wittrick et al., 1986), but to this day, the general solution still presents considerable
di�culties.
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1.2. General form of the solutions

The basic equilibrium state of the model corresponds to a uni-axial state of compression, which is
(approximately) a linear function of the intensity of the applied load. Taking into account, the periodicity
of the support conditions and the circumstance that the model is prismatic, the bifurcation buckling from
this state must, in general, be governed by a bifurcation diagram of the pitchfork type (Fig. 2). In general,
we mean here simple bifurcation as opposed to the particular case of bifurcation in multiple branches.

When buckling occurs with a buckling mode that is characterized by a wave pattern with a characteristic
wave length equal or smaller than the bay length l, it is called local buckling. Local buckling in sti�ened
panels usually corresponds to a stable transition of state. In other words, the panel loading can be increased
beyond the buckling load without immediate failure of the structure. This expectation follows from ex-
perience with the behavior of the type of structures under consideration here (Koiter, 1945; Budiansky,
1974).

Unstable buckling, generally, occurs if the wave length of the buckling mode in the axial direction co-
incides with two times the bay length l. In this case, the buckling phenomenon is called overall or global
buckling. Unstable overall buckling can take place when the global mode is in¯uenced by additional

Fig. 2. Buckling as a bifurcation phenomenon.

Fig. 1. The panel problem simpli®ed.
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sti�ness reducing e�ects. These e�ects are for example, interaction with local modes, degradation of the
material behavior during the onset of the buckling process (not considered here) or a detrimental additional
deformation of the cross-section of the panels. An upper bound to the phenomenon of global buckling can
be provided if the deformation of the cross-section is neglected and the longitudinal edge supports are not
enforced. In that case, the behavior of the panel model is reduced to that of a beam on multiple supports
and the buckling load then corresponds to the Euler load of a simply supported strut.

The method of solution discussed in this article is focused on a single mode bifurcation of the initial
straight state of the panel. The multi-mode case is thus not considered here, although it can be developed on
a similar basis. The method is a computerized application of KoiterÕs initial post-buckling theory (Koiter,
1970, 1976). Although approximate in nature, the solutions produced by it are expected to be acceptable in
the range of load intensities within which the panels have to operate in practice. This observation especially
refers to the local form of buckling. For the global form of buckling, the validity of the post-buckling
solution may be somewhat more restricted.

1.3. The ®nite strip method

A general approach to the solution of the multi-bay problem is o�ered by nonlinear shell ®nite element
codes such as STAGSSTAGS (Rankin et al., 1989). However, this approach, which uses continuation methods
(Riks, 1984), requires considerable power in computer resources. For computing the post-buckling sti�ness
in a preliminary design optimization procedure these programs are still too slow so that alternative ap-
proaches need be considered.

There are two ways to reduce the volume in computations. One is to replace the (two dimensional) ®nite
element model of the panels by a (one dimensional) ®nite strip model, (Cheung, 1976), that exploits the
periodicity present in the multi-bay panel. The other is to apply a perturbation method instead of a con-
tinuation procedure. Of course, the ®rst choice introduces a rather severe limitation to the type of panels
and loading conditions that can be admitted for analysis, while the second restricts the range of validity of
the solutions. But the gain in speed by which the analyses can be carried out by the introduction of these
choices is so signi®cant that a code development on this basis can still be justi®ed.

Successful computer implementations of the ®nite strip method for buckling analysis resulted, for ex-
ample, in the codes BUCLASPBUCLASP (Vishwanatan and Tamakuni, 1973), and VIPASA (Wittrick and Williams,
1974; Plank and Wittrick, 1974). Another example of the code that employs the ®nite strip method is
EMFTOREMFTOR (van der Sloot, 1980). However, the capabilities of the ®rst two are restricted to a linearized
buckling analysis. This also counts for EMFTOREMFTOR, although it has an added and special capability that aims
at the prediction of the (ultimate) collapse state of the panel, which is associated with an overall mode
triggered by non-linear material behavior. This particular extension will not be further discussed (van der
Sloot, 1980).

Unfortunately, a linearized buckling analysis can neither provide an acceptable approximation of the
post-buckling state, nor give an indication of the residual sti�ness of the panel, once the load has exceeded
the critical value. This is clearly a handicap. The knowledge of the post-buckling state is often important.
Take for example the case, where the maximum load carrying capacity of the panel must be assessed on
the basis of a limit state of the material in the post-buckling state (fracture in composites for example). The
focus of this article is, therefore, on development of ®nite strip solution that includes the construction of the
initial post-buckling terms. With this extension, the ®nite strip analysis as a quick, preliminary design tool
will provide more information than was hitherto possible.

Graves-Smith and Shridharan (1981) were probably the ®rst to demonstrate the possibilities of the ®nite
strip approach to analyze the initial post-buckling behavior of prismatic plate structures. The author last
mentioned developed the idea further in several follow up articles, (Shridharan and Graves-Smith, 1981;
Shridharan, 1982, 1983; Shridharan and Ali, 1986), which clearly demonstrated the possibilities of this
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approach. In the present article, the principal idea of the method is similar to that which was used by
Graves-Smith and Shridharan. However, the development is completely independent, and unlike the work
mentioned above, it is speci®cally geared here to the analysis of wing box panels by taking into account, the
speci®c conditions that hold for these structures.

We ®nally mention that the work reported in this article was carried out in stages during the period
1983±1989. It was ®rst described in Riks (1983, 1989) and Arendsen (1989), reports, which were not in-
tended for general distribution. The resulting code, which we will refer to as PANBUCKPANBUCK in this article, is
presently a part of the panel optimization code PANOPTPANOPT developed by Arendsen (Arendsen and Wiggen-
raad, 1991; Arendsen, 1993).

2. Preliminary considerations

2.1. Basic conventions

Panels under consideration consist of an outer skin, which may be curved in the transverse direction but
is straight in the axial (spanwise) direction. The skin is sti�ened with thin walled members of the type
sketched in Fig. 3. The sti�eners are bonded, riveted or are an integral part of the skin. Composite materials
in the form of laminates can be used as long as the laminate build up meets certain symmetry requirements.

A panel will, thus, be conceived as an assembly of prismatic shell sections stretched out over the whole
length (2L � 2kl; k � large) of the panel. While some of these sections are curved in the transverse direction,
they will be modeled by subdividing them into plate ®nite elements of length 2L that are referred to as ®nite
strips.

To describe the displacement of the plate strips, we introduce displacement functions de®ned with re-
spect to orthogonal coordinate systems that are locally attached to the plate sections at some reference
con®guration of the panel. It is useful, at ®rst, to let the reference con®guration coincide with the pre-
buckling state I. We also use the convention that the plane z � 0 of the local coordinate systems coincide
with the mid-surface of the plate strips.

When the base vectors of the local coordinate system are denoted by ex, ey , ez, the displacements of the
mid-surface of the plate can be given as

u � u�x; y� � u�x; y�ex � v�x; y�ey � w�x; y�ez: �2:1�

To describe the state of deformation of the plate elements, we introduce conventional small strain, small
rotation (laminated) shell theory. This means that for the strain ®eld, we use the Love/Kirchho� as-
sumption

Fig. 3. Types of sti�eners.
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c�u; z� � e�u� ÿ zj�u�; �2:2�
where, e and j correspond to the de®nitions of the membrane strains and the changes of the curvature of
the mid-plane
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With these conventions, we can construct the potential energy functional that will stand at the basis of the
development of the governing equations.

2.2. Potential energy

For small strains (Koiter, 1966, 1967), the increase of the elastic energy from state I to a neighboring
state II is de®ned by
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W corresponds here to the speci®c elastic energy, and h, S denote that the integrals are taken over the
thickness and reference surface, respectively. In this expression, the ®rst derivative of the speci®c elastic
energy W with respect to the strains can be identi®ed as the prestress in the plate that from now on will be
represented by the three component vector rI� (rxx, ryy , rxy)

T
I . The second derivative of W corresponds to

the matrix of elasticity constants. It will be denoted by EI. Consequently, we write for Eq. (2.5)

V � � V �c�II ÿ V �0�I �
Z Z

rT
I �z�cdzdS �

Z Z
cTEI�z�cdzdS: �2:6�

As mentioned, all quantities including the integrals, are at this point de®ned with respect to the basic (pre-
buckling) state I.

The increase of the total potential energy of the panel from state I to state II is then given by

P � V � ÿ
Z

C
TTudC: �2:7�
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The second term in the right-hand side is the work done by the external loading T. The external loading
consists of in-plane tractions acting along the boundaries C of the panel. In our case, this corresponds to the
axial load distribution that is acting on the far ends x � �L. No other type of loading are considered here.

It follows that we can write

P �
Z

h

Z
S

rT
I �z��eÿ zj�dzdS � 1

2

Z
h

Z
S

eTEI�z�edzdS �
Z

h

Z
S

eTEI�z�jzdzdS

� 1

2

Z
h

Z
S

jTEI�z�jz2 dzdS ÿ
Z

C
TTudC: �2:8�

The pre-buckling state I of the panel is assumed to be a uniform state of compression given by

eT
I � �ÿke0; km12�y�e0; 0�T; jI � 0; �2:9�

where the parameter k is the load intensity factor and e0 a nominal (reference) value of the axial strain at
k� 1. The component exx�)ke0 of the strain distribution in state I is equal and uniform in all parts of the
panel. In the transverse direction, eyy � km12(y)e0 may vary with y because the elasticity constant m12 of the
laminate depends on the materials that are used for the various parts of the cross-section. These as-
sumptions imply that the transverse stress ryy is neglected in state I, which is not unreasonable because,
usually, the sti�ener sections and outer skin in the wing box can expand freely in the transverse direction
(except perhaps at the rib stations, an e�ect that we will ignore). Another consequence of the previous
assumptions is that the theory developed here can only be applied to panels with a restricted choice of the
laminate build-up. Laminates with bending±stretching coupling, for example, would in general show out-
of-plane deformations at the very instant the load is applied 1 and this would violate our basic assumption
about state I in (2.9).

With these restrictions, the third term in the right-hand side of Eq. (2.9) disappears so that the energy
expression is reduced to
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For convenience, we introduce the notation

NT
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Z
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Z

EI�z�dz BI �
Z

EI�z�z2 dz; �2:11�

where
NI is the vector of stress resultants in state I,
CI, the matrix of in-plane sti�nesses in state I and
BI, the matrix of bending sti�nesses in state I.

Expression (2.10) can then be written in the form:
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It is now expedient to write the vector of in-plane strains as the sum of two parts:

e�u� � l1�u� � l2�u�; �2:13�

1 In such cases, a bifurcation theory is not applicable unless the coupling is very weak. Please note, that for aerodynamic reasons, it

is unlikely that laminates with strong stretching±bending coupling would be applied.
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where l1 denotes the linear and l2 the quadratic form of e. Because the displacements u and the strain e are
supposed to be measured with respect to state I, a virtual displacement du in the fundamental state I induces a
virtual strain given by

de � e�du� � l1�du�: �2:14�
This means that the fundamental state I must satisfy the variational equation:Z

NT
I l1 �du� dS ÿ

Z
TT dudC � 0: �2:15a�

Consequently, if we substitute u for du in Eq. (2.15a), the identity that resultsZ
NT

I l1�u�dS ÿ
Z

TTu dC � 0 �2:15b�

can be used to simplify Eq. (2.12) to
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2
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2

Z
S

jTBIjdS: �2:16�

It is this functional that we will use as the starting point for all further considerations.

Remark: In the foregoing derivation, the prestress rI(z), or equivalently, the corresponding stress resultants
NI of the pre-stress rI(z) are supposed to be determined by eI and thus are related to the (known) pre-
buckling displacement ®eld UI� kU0. Here, UI measures the di�erence between the pre-buckling state and
the undeformed state. The ®eld u is thus the shift from the pre-buckling state as de®ned in the decom-
position

Utotal � kU0 � u �2:17�
with Utotal denoting the total displacement of the deformation incurred (Fig. 2). Throughout the remaining
part of this article, this decomposition is further speci®ed by the condition that both ®elds, UI� kU0 and
Utotal are de®ned at the same value of the load (determined by the load factor k).

3. Buckling equations

3.1. Simpli®cation of the energy functional

We prefer to proceed here with a derivation of the perturbation equations that govern the buckling and
post-buckling behavior of the panel model rather than taking them straightforwardly from the literature.
This choice serves two purposes. In the ®rst place, it seems appropriate to keep the development of the
theory reasonably self contained for the bene®t of those readers that are not quite familiar with the theory
given in (Koiter, 1945; Budiansky, 1974). In the second place, such development o�ers the opportunity to
stress the signi®cance and limitations of the solutions that are produced by it. It is further noted that the
treatment given here is directly focused on the construction of the bifurcation diagram of the panel model
and is thus restricted to this particular case.

In the previous section, the basic equilibrium state I was taken as the reference state. We now observe
that for the problem under discussion, the di�erence between the undeformed state 0 and the pre-buckling
state I is expected to be very small. This means (Koiter, 1966) that it is permissible to ignore this di�erence
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without serious consequences for the validity of expression (2.16) as the governing energy functional. 2

The formulation of Eq. (2.15) can thus further be simpli®ed by evaluating the integrals with respect to the
undeformed state. This also means that from now on we can drop the subscript I in the notation of the
material constants CI, BI and will write them as C, B.

With the decomposition of the membrane strains introduced in Eq. (2.13), the energy functional (2.16)
can be ordered into polynomial form:

P �u; k� � P 0
2 �u� ÿ kP 02�u� � P3�u� � P4�u�; �3:1�

where the terms in the right-hand side are given by
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2

Z
lT
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The parameter k is the load intensity factor de®ned by

NI � ÿkN0: �3:3�
Here NI is the vector of pre-buckling (membrane) stress resultants and N0 a reference value, which we can
call the nominal load (N0 corresponds to the nominal axial strain e0). The notation adopted in Eqs. (3.1)
and (3.2) is that which was introduced by Koiter (1945) and we will continue to use it in the sequel. See
Appendix A for an explanation.

3.2. Governing equations in variational form

We will now derive the equilibrium equations for solutions other than the basic state UI� kU0 in
variational form. An arbitrary variation from the state Utot� kU0 + u is denoted by du� en, where e is a
(non-vanishing) but arbitrarily small number and n is an arbitrary displacement function of the class of u

(i.e. kinematically admissible). With this proposition, we can introduce the directional derivative of the
functional P with respect to n:

Pu�u�n � d

de
fP �u� en�g � oP�u�

ou
n � lim

e!0

P �u� en� ÿ P �u�
e

� �
: �3:4�

The equilibrium states of the panel are determined by the stationary values of the potential energy Eq. (3.1).
A stationary value of the potential energy is attained at a given state (u, k), if for any admissible n and any
non-vanishing but arbitrarily small e, the sign of the di�erence:

P �u� en� ÿ P�u� � �Pu�u�n�e�O�e2� �3:5�

2 It is far more laborious to arrive at Eqs. (3.1) and (3.2) when the undeformed state 0 is taken as reference con®guration.
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does not depend on the sign of e. This means that

Pu�u�n � lim
e!0

P �u� en� ÿ P �u�
e

� �
� 0: �3:6�

As can be veri®ed, in terms of expansion (3.1), the limit given above corresponds to the (non-linear)
variational equation:

P 0
11�u; n� ÿ kP 011�u; n� � P21�u; n� � P31�u; n� � 0: �3:7�

It is this equation, which determines all possible equilibrium states of the panel model (including the pre-
buckling state (u, k)I� (0, k)), for any given value of the load. Eq. (3.7) (also referred to as the weak form of
the governing equations) is equivalent to a set of (non-linear) partial-di�erential equations with boundary
conditions, but the derivation of these equations is not of interest here.

3.3. Parametrization of the solutions

The solutions of Eq. (3.7) can be viewed as a family of curves in the space spanned by the displacement
function u and the load parameter k. In parametric form, any part of such a curve can be denoted by (u,
k)� {u(g), k(g)}, where g stands for a suitable path parameter. The way to specify this parameter is to
complement Eq. (3.7) with an extra equation:

P 0
11�u; n� ÿ kP 011�u; n� � P21�u; n� � P31�u; n� � 0;

h�u; k� ÿ g � 0:
�3:8�

Here h(u, k) stands for a suitably chosen function of u and k (Riks, 1984). A practical choice for h(u, k) can
be based on the following consideration. To measure the ``length'' of the displacement ®eld u, we introduce
a positive de®nite quadratic form T2(u). This is an integral, which is built on the same arguments that
appear in the quadratic forms P0

2(u) and/or P 02(u), but which is otherwise arbitrary (Koiter, 1945). (We will
see that P 02(u) presents itself as a natural choice for T2.) With this functional, we de®ne the length of u by

kuk2 � T2�u� or kuk �
�����������
T2�u�

p
: �3:9�

Using the same functional, we consider the angle between two arbitrarily chosen ®elds u, v to be de®ned by

cos h �
1
2
T11�u; v�
kukkvk : �3:10�

In this expression, T11 is the bilinear form that arises in the (binomial) expansion of T2:

T2�u� v� � T2�u� � T11�u; v� � T2�v�: �3:11�
With Eq. (3.10), we introduce an inner product rule and it follows from this de®nition that u is declared to
be orthogonal to v if

T11�u; v� � 0: �3:12�
Our principal interest goes out to the particular solution of Eq. (3.8) that branches o� the pre-buckling

state I at the smallest positive value of the load k� kc. To examine where this occurs, we will consider the
Taylor expansion of the basic state I developed at an arbitrary point: {U1, k1}� {k1U0, k1}. Notice that in
terms of the additional displacement this corresponds to {u1, k1}� {0, k1}. Without loss of generality, it can
be assumed that at {u1, k1}, g� 0, so that the Taylor expansion of the solution {u(g), k(g)} around {u1, k1}
is given by
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u�g� ÿ u1 � u
�

1g� 1
2
u
��

1g
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k�g� ÿ k1 � k
�

1g� 1
2
k
��

1g
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�3:13�

Here di�erentiation with respect to g is denoted by

d� �
dg
� ���; d2� �

dg2
� ����; u

�
1 � u

��0�; k
�

1 � k
�
�0�; etc:

We will now choose the parameter g by specifying equation h�u; k� ÿ g � 0 as

1
2
T11�n; DkU0 � u� ÿ g � 0: �3:14�

In this form Dk is given by Dk � kÿ k1 and n is an arbitrary vector (®eld) of unit length that we can choose
in any appropriate way, i.e., in a way that suits the analysis as best as possible. We note that in this manner
the path parameter g is locally de®ned, that is, it is de®ned with respect to the solution {U1, k1} at which
expansion (3.13) is evaluated. The geometrical signi®cance of the use of Eq. (3.14) is illustrated in Fig. 4.

3.4. The perturbation equations

We will now consider expansion (3.13) as the solution for the branch of the ®rst bifurcation point along
I:{kU0,k}. Our incentive is to compute the ®rst two terms of Eq. (3.13). The equations that determine the

path derivatives �u�1; k
�

1�, �u��1; k
��

1�; . . . ; at �u1; k1� are obtained by successive di�erentiation of Eq. (3.7) and
the auxiliary Eq. (3.14) with respect to g. It leads to the sequence of equations:

P 0
11�u
�

1; n� ÿ k1P 011�u
�

1; n� ÿ k1

�
P 011�u1; n� � P111�u1; u

�
1; n� � P211�u1; u

�
1; n� � 0; �3:15a�

1
2
T11�n; k1

�
U0 � u

�
1� ÿ 1 � 0; �3:15b�

P 0
11�u
��

1; n� ÿ k1P 011�u
��

1; n� ÿ k
��

1P 011�u1; n� ÿ 2k
�

1P 011�u
�

1; n� � P111�u�1; u
�

1; n� � P111�u1; u
��

1; n�
� P1111�u1; u

�
1; u
�

1; n� � P211�u1; u
��

1; n� � 0; �3:16a�

Fig. 4. Perturbation parameter choices.
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1
2
T11�n; k

��
1U0 � u

��
1� � 0; �3:16b�

P 0
11� u
���

1; n� ÿ k1P 011� u
���

1; n� ÿ 3k1

��
P 011�u

�
1; n� ÿ 3k1

�
P 011�u

��
1; n� ÿ k1

���
P 011�u1; n� � 3P111�u�1; u

��
1; n�

� P111�u1; u
���

1; n� � P1111�u�1; u
�

1; u
�

1; n� � 3P1111�u1; u
�

1; u
��

1; n� � P211�u1; u1

���
; n� � 0; �3:17a�

1
2
T11�n; k1

���
U0 � u1

���� � 0; �3:17b�

etc. We note that the third-order set of Eqs. (3.17a) and (3.17b) is included here because, as it will transpire,

it is otherwise not possible to complete the solution for k1

��
.

It is now, the time to particularize Eqs. (3.15)±(3.17) to the case that {u1, k1} corresponds to a solution
of the pre-buckling state I, so that {u1, k1}� {0, k1}. For convenience, we introduce a simpli®cation in
the auxiliary equations by demanding that n is orthogonal to U0, i.e., T11(n, U0)� 0. Finally, we will drop
the subscript ( )1 because carrying it about is not really necessary in what follows. The result of these
changes is

P 0
11�u
�
; n� ÿ kP 011�u

�
; n� � 0; �3:18a�

1
2
T11�n; u�� ÿ 1 � 0; �3:18b�

P 0
11�u
��
; n� ÿ kP 011�u

��
; n� ÿ 2k

�
P 011�u

�
; n� � P111�u� ; u� ; n� � 0; �3:19a�

1
2
T11�n; u

��� � 0; �3:19b�

P 0
11� u
���
; n� ÿ kP 011� u

���
; n� ÿ 3k

��
P 011�u

�
; n� ÿ 3k

�
P 011�u

��
; n� � 3P111�u� ; u

��
; n� � P1111�u� ; u� ; u� ; n� � 0; �3:20�

1
2
T11�n; u

���� � 0:

These equations determine the path derivatives of the basic state I at any value of k. The question of a
possible bifurcation hinges on the question of the uniqueness of the solutions of Eqs. (3.18)±(3.20). Because
we derived these equations along the basic state I, we know and can verify that u

� � 0; u
�� � 0; u

��� � 0, etc. is
always a solution. This (trivial) solution corresponds to the expansion of the pre-buckling state I. But the
presence of any other non-zero solution for u

�
, u
��

etc. at a particular value k� k1 signi®es a loss of uniqueness
of the solutions for the path derivatives at {0, k1}and thus represents a bifurcation from I at this point.
Therefore, Eqs. (3.18)±(3.20) determine also the path derivatives of an equilibrium path II that branches o�
the basic state I.

3.5. The (initial) buckling equations

It is necessary to discuss ®rst, the solution of Eqs. (3.18a) and (3.18b). The variational Eq. (3.18a) of this
system is homogeneous in u

�
. It can only have non-zero solutions u

� � ai for special values of k� ki

(i � 1; 2; 3; . . .). This eigenvalue problem determines the locations of bifurcation points along the basic state
I and provides information about the directions of the bifurcations at the bifurcation points determined by
ki, in terms of the eigenmodes or buckling modes ai. But only the ®rst bifurcation point {0, kc} determined
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by the lowest eigenvalue kc� k1 6 ki, is of interest here, because it is at this particular point that the panel
will undergo a change from state I into another state II.

The lowest eigenvalue kc is called the (critical) buckling load and the corresponding solution for the
displacement ®eld u

� � ac is called the (critical) buckling mode. Bifurcations of the solutions that occur along
the unstable part of (0, k)I at values of ki > kc are not of any relevance for the physical behavior of the panel
(unless ki are close to kc) and are therefore not considered here.

Eqs. (3.18) have some special properties that play an important role in the theory, so that we summarize
them below. It follows from the symmetry of the bi-linear forms in Eq. (3.17a)

P 0
11�u; v� �

Z
lT
1 �u�Cl1�v�dS �

Z
jT

1 �u�Bj1�v�dS � P 0
11�v; u�;

P 011�u; v� �
Z

NT
0 l11�u; v�dS � P 011�v; u�

that the solutions ki, ai for ki ¹ kj, (i ¹ j) satisfy the property:

P 0
11�ai; aj� � P 011�ai; aj� � 0: �3:21�

This means that the eigenmodes are orthogonal with respect to the bilinear forms given above. Because Eq.
(3.18a) is homogenous, the solutions are only determined apart from a constant. The constant is determined
by the second (scalar) Eq. (3.18b). Its value depends on the choice of T2 and n. If we take the admissible
choice T2 � P 02(u), and set n� u

�
, system (3.18) is changed to

P 0
11�u
�
; n� ÿ kP 011�u

�
; n� � 0;

1
2
P 011�u

�
; u
�� ÿ 1 � 0:

�3:22�

This set of equations has the same solutions as Eq. (3.18a) and (3.18b)

u
� � ai; k � ki �i � 1; 2; 3; 4; 5; . . .�;

which for ki ¹ kj, j ¹ i, satisfy the relations:

1
2
P 011�ai; aj� � dij

1
2
P 0

11�ai; aj� � kidij �no sum over i� �3:23�

�dij � Kronecker delta� �i; j � 1; 2; 3; 4; . . .�:
We observe that the choices T2(u)� P 02(u) and n� u

�
lead to a compact and convenient formulation. In the

following, we will concentrate on the solutions that are determined by a1� ac and, accordingly, take for n

the ``direction'' n� ac.

3.6. The second-order terms

It will now be assumed that the solution of Eq. (3.22), i.e., the critical buckling load k1� kc and

corresponding mode a1� ac have been determined. The unknowns that are still to be determined are k
�

II and

the pair {u
��
; k
��

II}. The subscript II attached to k
�

and k
��

emphasize that just as u
��

, these quantities belong to
the branch II (Fig. 2). The continuation of the analysis begins with the second-order system (3.19). With the
changes in notation and the new information obtained by the solution of Eq. (3.22), this system can be
written as:

P 0
11�u
��
; n� ÿ kcP 011�u

��
; n� ÿ 2k

�
IIP 011�ac; n� � P111�ac; ac; n� � 0; �3:24a�
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1
2
P 011�ac; u

��� � 0: �3:24b�

Eq. (3.24a) is linear and inhomogeneous. The solution u
��

is subject to the side condition (3.24b) that requires
u
��

to be orthogonal to ac. But the variational Eq. (3.24a) must hold for any admissible function n not
necessarily perpendicular to ac. It should thus also hold for n � ac. Substitution of this particular choice in
(3.24a) and using P 011�ac; u

��� � P 0
11�ac; u

��� � 0 leads to the identity:

k
�

cII � P111�ac; ac; ac�
4P 02�ac� � 3P3�ac�

2P 02�ac� �
3

2
P3�ac�: �3:25�

It is noted that this condition (3.25), which determines k
�

can be interpreted as a compatibility condition for
the solution of system (3.24a) and (3.24b).

It is a consequence of the periodicity of the solutions in axial direction that the multi-bay problem is
always governed by a symmetric bifurcation point. In that case, we can show that P(u(g))�P(u()g)) and this

implies that P3(ac) º 0 and consequently k
�

cII º 0. The term kc

�
IIP11

0(ac, n) can thus be dropped in Eqs. (3.24a)
and (3.24b). A further discussion about the solution of the system Eqs. (3.24a) and (3.24b) is not necessary
at this point. Some particular aspects of it will be considered later. It will, here, be simply assumed that the
solution of Eqs. (3.24a) and (3.24b) v � u

��
can be obtained as soon ac is determined. This leads us then to

the discussion of the computation of the last undetermined quantity, the derivative k
��

II. The curvature term

k
��

II does not appear in Eq. (3.19), but in the third-order derivative Eq. (3.20). With the information

obtained so far Eq. (3.20) can be simpli®ed to

P 0
11� u
���
; n� ÿ kcP 011� u

���
; n� ÿ 3k

��
cIIP 011�ac; n� � 3P111�ac; u

��
; n� � P1111�ac; ac; ac; n� � 0; �3:26a�

1
2
P 011�ac; u

���� � 0: �3:26b�

Note the u
��

in this expression is determined by Eqs. (3.24a) and (3.24b). Just as in the previous case also Eq.
(3.26a) must be satis®ed for all kinematically admissible variations n. This yields as compatibility condition
(n� ac):

k
��

cII � 1

6P 02�ac� �3P111�ac; ac; u
��� � P1111�ac; ac; ac; ac�� � 1

P 02�ac� �4P4�ac� � 6P21�ac; u
����

or, with P2�ac� � 1, and the identity: fP 0
2 �u
��� ÿ kcP 02�u

���g � ÿP21�ac; u
��� that follows when we substitute

n � u
��

in Eq. (3.24a),

k
��

cII � 4P4�ac� ÿ fP 0
2 �u
��� ÿ kcP 02�u

���g: �3:27�

Expressions (3.25) and (3.27) correspond to the classical results obtained by Koiter (1945).
The ®nal solution to the panel problem can now be written as

u�g� � acg� 1
2
vg2; �3:28a�

k�g� � kc � 1
2
k
��

cIIg
2; �3:28b�

where the buckling mode ac is determined by Eq. (3.22) and the ®rst correction term v � u
��

is the solution
for Eqs. (3.24a) and (3.24b). Please note that the path parameter g in (3.28a) can be seen as the component
of the buckling mode ac in the ®eld u. The term �1=2�g2v is thus the orthogonal complement to gac in u.
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3.7. The fundamental bifurcation equation

The functional relationship (3.28b) between the load parameter k and the path parameter g has a special
signi®cance that can be understood by the following consideration. The equilibrium equations in un-
abridged form are given by Eq. (3.7):

P11�u; n� � P21�u; n� � P31�u; n� � 0; �3:29a�
with

P11�u; n� � P 0
11�u; n� ÿ kP 011�u; n� �3:29b�

and n is any admissible variation of u. We now take a special ÔdirectionÕ for n, i.e., n � ac thus projecting
Eqs. (3.29a) and (3.29b) to ac and substitute Eq. (3.28a) for the solution u. After some manipulation and the
use of the identities: k

�
cII� 0, P0

2(ac)ÿkcP
0
2(ac)� 0 and P2(v)�P21(ac, v)� 0, we obtain

ÿ2�kÿ kc�P 02�ac�g� 4fP4�ac� ÿ 1
4
�P 0

2 �v� ÿ kP 02�v��gg3 �O�g4� � 0: �3:30�
This single equation represents an equilibrium equation in terms of k and g and it describes the bifurcation
phenomenon in condensed form. It follows that the solution of Eq. (3.30) can be separated in two parts:

�i� g � 0 ! the fundamental state I;

�ii� 2�kÿ kc� ÿ k
��

cIIg
2 � 0 ! the post-buckling state II

�3:31�

and we notice that the last result (ii) turns out to be identical to (3.28b). Thus the cardinal part of the
solution, which takes place in the subspace spanned by (g, k) (the direction of the buckling mode and k), is
represented by Eq. (3.28b).

4. The spatial form of the solutions

4.1. The buckling modes

In this section, we will introduce the global form of the di�erential equations with periodicity conditions
that are equivalent to the variational equations given by Eqs. (3.18)±(3.20). This is done in order to fa-
cilitate the discussion of the selection of the appropriate solutions in the axial direction. But because the
®nite strip method directly solves the variational equations rather than the di�erential equations, it is not
necessary to present the latter in more detail than is strictly necessary for our discussion.

Thus, just as Eqs. (3.7), (3.18)±(3.20) can be converted to systems of partial di�erential equations with
boundary conditions. Symbolically, we can write the equations that correspond to Eqs. (3.18)±(3.20) as

D0
1�u
�� ÿ kD01�u

�� � 0

� boundary conditions

P 011�u
�
; u
�� ÿ 1 � 0;

�4:1�

D0
1�u
��� ÿ kD01�u

��� � D1
2�u
��
� boundary conditions

P 011�u
�
; u
��� � 0;

�4:2�

where D0
1, D1

1 denote two linear homogeneous di�erential operators and D1
2 denotes a non-linear di�erential

operator of the degree 2. For the prediction of the axial shape of the solutions of Eqs. (4.1) and (4.2), we
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only need to focus on the formulation of the boundary conditions and the global form of the right-hand
side of Eq. (4.2).

The conditions along the longitudinal edges of the panel generally correspond to that of simple support,
and as we will see later, the ®nite strip method will allow us to satisfy the kinematic part of these conditions
exactly. However, there are also support conditions to be ful®lled at the rib situations: x � �kl, for k � 1,
2, 3, 4, 5,. . . These support conditions are determined by the way the compression panels are fastened to
the ribs. In most wing box designs, the fastening is restricted to the skin of the panel, and does not include
the sti�eners. We will therefore assume that the support conditions at the rib stations correspond to the
suppression of w at x � �kl.

The ®rst set of partial di�erential Eq. (4.1), equivalent to Eq. (3.18a), yields the eigen solutions:

u
� � ai k � ki for i � c; 2; 3; 4; 5 . . . �4:3�

with the property that all eigenmodes are real and all eigenvalues are positive. Just as in the previous
section, it is assumed that sequence (4.3) is ordered in the following way: kc < k2 6 � � � 6 kn 6 � � � As be-
fore, we discuss the simplest case, i.e. when kc is well separated from the other characteristic values ki : i� 2,
3,. . ..

Because the panel model is periodic in axial direction, we can use the following particular solutions for
Eq. (4.1)

u
�

c � ac �
u�x; y�
v�x; y�
w�x; y�

8<:
9=; � h�y� cos px

g�y� sin px
f �y� sin px

8<:
9=;; �4:4�

where the wave number p is given by p�mp=l; m� 1, 2, 3, 4, 5, . . . Note, that at x � ��kl�, k� 1, 2, 3, 4,
. . . ; functions (4.4) take the values:

u
�

c �
uc

� ��kl; y�
vc

� ��kl; y�
wc
� ��kl; y�

0B@
1CA � �ÿ1�mkh�y�

0
0

0@ 1A: �4:5�

This shows that the solutions (4.4) satisfy the condition w� 0 at the rib stations.
With proposition (4.4), the solution of Eq. (4.1) (or equivalently Eqs. (3.18a) and (3.18b)) is reduced to

the determination of the transverse pro®le of the buckling mode {h(y), g(y), f(y)}T. The way this will be
carried out is described in Section 5.

4.2. General shape of the modi®cation terms

We now consider the general form of the solution for u
��

c. It can be veri®ed by inspection, that substi-
tution of the shape functions (4.4) in the ®rst part of Eq. (4.2) yields

D0
1�u
��� ÿ kcD

0
1�u
��� �

H2�y� sin 2px
G0�y� � G2�y� cos 2px
F0�y� � F2�y� cos 2px

8<:
9=;: �4:6�

The functions of the right-hand side of Eq. (4.6) are thus completely determined by the solution of Eq. (4.1)
represented by Eq. (4.4). It can now be shown, by inspection, that the particular solutions of the second-
order perturbation Eq. (4.2) must be of the form:

E. Riks / International Journal of Solids and Structures 37 (2000) 6795±6824 6809



u
��

c �
q0x� h2�y� sin 2px

g0�y� � g2�y� cos 2px
f0�y� � f2�y� cos 2px

8<:
9=;; �4:7�

where the scalar q0 and the functions h2�y�; g2�y�; f2�y�; g0�y�; f0�y� are still to be determined. The term �q0x�
for the tangential component (u), which is part of the homogeneous solution of Eq. (4.6) is added here in
order to be able to ful®ll the requirement that the solution for the modi®cation term u

��
c should not change

the total axial load of the panel. The discussion of this particular detail of the construction of u
��

c is
postponed to Section 5.3.

The particular solution of Eq. (4.6) satis®es the equilibrium equations with respect to the axial co-
ordinate x, and when the transverse pro®les are determined correctly, they also satisfy these equations in
the y direction. What can be said about the support conditions at x � �kl? Rearrangement of Eq. (4.7)
gives

u
��

c �
q0x� h2�y� sin 2px

g�0�y� � g2�y� �cos 2pxÿ 1�
f �0 �y� � f2�y� �cos 2pxÿ 1�

8<:
9=; �4:8�

with g�0�y� � g0�y� � g2�y�, f �0 �y� � f0�y� � f2�y�. At the rib stations, these functions thus take the
values:

uc

�� �
uc

����kl; y�
vc

����kl; y�
wc

�� ��kl; y�

0B@
1CA � �klq0

g�0�y�
f �0 �y�

0@ 1A: �4:9�

Eq. (4.9) shows that the rib support condition w � 0 is not satis®ed in general. It can be argued how-
ever, that the boundary layer solution that is necessary to complete Eq. (4.8) is insigni®cant and can be
neglected.

It is well known from the non-linear plate theory that the solution of the second-order perturbation
equations concerns the redistribution of stresses in the plane of the plate at the instant, the normal buckling
displacements w(x,y) start to grow. On the kinematical level, solution (4.8) represents an in-plane dis-
placement ®eld that is compatible with the normal displacement w as soon as this component becomes
®nite. Thus, while the ®rst-order solution is primarily an out-of plane displacement, the second-order ®eld
consists primarily of in-plane components. For example, for a simply supported plate, non-zero compo-
nents u, v are not present in uc

� � ac, i.e., h� g� 0 in Eq. (4.4), whereas in u
��

c� v the situation is reversed
i.e., f0, f2� 0 in Eq. (4.7). This observation leads to the conclusion that coupling between the in-plane and
out-of-plane components ± in either of the two ®elds ac and v ± occurs only when the various plate units of
the panel meet each other at angles.

It thus follows that coupling between the in-plane components (u,v) and the normal component w in
either of the modes ac and v occurs generally, but only in a weak sense. This implies that we expect the
contributions of the component w to remain small in the second-order solution v because it is connected to
small contributions of u,v in the buckling mode ac. According to this reasoning, a recti®cation of the defect
at the rib supports produced by Eq. (4.8) would then correspond only to a negligible change of the total
energy of the panel. In other words, the neglect of the support condition wc

�� ��kl; y�� 0 should not have an
appreciable in¯uence on the ®nal solution. We conclude these observations by nothing that it is always
possible to check the error of our approximation using Eq. (4.9).
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5. The ®nite strip method

5.1. Basic idea

Koiter derived Eqs. (3.17a) and (3.17b) on the basis of two minimum problems (Koiter, 1945). The ®rst
reads:

(i) Find the smallest positive value of k � kc that corresponds to a solution of the problem,

k � min
P 0

2 �u�
P 02�u�

� �
�5:1a�

for any admissible but non-vanishing u satisfying

P2
0�u� � 1: �5:1b�

The second problem can be cast into the form:
(ii) Find the function v that satis®es

minfP 0
2 �v� ÿ kcP 02�v� � 2P21�u�c ; v� � jP11

0�ac; v�g �5:2�
for any admissible v and j. (The parameter j is here a Lagrange multiplier that enforces the orthogonality
condition on ac and v, in accordance with Eq. (3.24b)).

To obtain the solutions for the two problems de®ned above, propositions (4.4) and (4.7) are substituted
into Eq. (5.1) and (5.2). This process reduces both problems from the dimension two to one, whereby the
remaining functions to be determined are the functions {h�y�; g�y�; f �y�}; {h0�y�; g0�y�; f0�y�} and
{h2�y�; g2�y�; f2�y�}, the transverse pro®les of the modes (4.4) and (4.7). For their solution, we can introduce
a one dimensional discretization procedure. This reduction process is known as the ®nite strip method
(Cheung, 1976; Vishwanatan and Tamakuni, 1973; Wittrick and Williams, 1974; Plank and Wittrick, 1974;
van der Sloot, 1980; Graves-Smith and Shridharan, 1978; Sridharan and Graves-Smith, 1981; Sridharan,
1982, 1988; Shridharan and Ashraf, 1986). The detailed description of the computer implementation of this
development is presented in (Arendsen, 1989). Here, we restrict the discussion to a few comments.

It is noted that at the code level the ®rst-order equations present themselves as
(i) Problem 1:

�K0�p� ÿ kK0�p��t � 0;

tTK0�p�tÿ 1 � 0
�5:3�

with p � mp=l; and m� 1, 2, 3, 4,. . . The N dimensional vector t denotes here the set of active degrees of
freedom that determine the transverse pro®le of the buckling mode u

�
c, whereas K�p; k�� K��p� ÿ kK0�p�

can be identi®ed as the sti�ness matrix of the panel determined along the basic state.
It should be realized that the ®nite strip formulation produces a sti�ness matrix K, which is dependent on

the wave number p(m) that we selected for the displacement ®eld u
�

c at Eq. (4.3). Consequently, the solutions
of the eigenvalue problem (5.3) are dependent on m, i.e., for each value of m, it de®nes a set of solutions

fti�m�; ki�m�g : k1�m� 6 k2�m� 6 k3�m� 6 � � � 6 kN�m� m � 1; 2; 3; . . . : �5:4�
The buckling load that we seek thus corresponds to the minimum of all k1(m) with respect to m.

(ii) Problem 2: The second problem is reduced in a similar fashion. In this case, the discretization process
produces two sets of inhomogeneous equations that are written as

K�p0; kc�q0 � r0�qc; kc�; p0 � 0; �5:5a�

K�p2; kc�q2 � r2�qc; kc�; p2 � 2p: �5:5b�
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The sets of discrete variables q0 and q2 determine the transverse pro®le of the ®eld (4.7). Notice, that the

path derivative k
�

II that characterizes the change of sti�ness at the point of buckling is determined by

integrals (3.27).

5.2. The transverse interpolation functions

The discretization of the transverse functions h, g and f is accomplished by dividing the transverse cross-
section of the panel into strips (Fig. 5). The shape functions that we choose for this transverse element are
given by

h�y� � bf�1ÿ f�u1 � fu2g;
g�y� � bf�1ÿ f�v1 � fv2g;
f �y� � bf�1ÿ 3f2 � 2f3�w1 � �fÿ 2f2 � f3�b1 � �3f2 ÿ 2f3�w2 � �ÿf2 � f3�b2g:

�5:6�

Here f � y=b denotes the local coordinate of the ®nite strip of width b, while u1; . . . ; b2 de®ne the nodal
degrees of freedom. The assembly of the right-hand sides r and the sti�ness matrices K in Eqs. (5.3), (5.5a)
and (5.5b) then follows a standard pattern.

The evaluation and assembly of the sti�ness matrices K0 and K0 is identical in the two successive
problems (5.3), (5.5a) and (5.5b) as these matrices are based on the same shape functions (5.6). The der-
ivation and the coding of the routines that compute the right sides of Eq. (5.5a and b), i.e., the vectors r0

and r2 is lengthy and very tedious by hand. It turned out that these functions could be generated with the
symbolic manipulation program REDUCEREDUCE (anonymous, 1984). Consequently, a substantial part of the
coding was produced by REDUCEREDUCE. The evaluation of the integrals P4�ac�, P 0

2 �v) etc. are carried out by
numerical integration. For more details refer to Arendsen (1989).

5.3. The buckling stresses as a self equilibrating system

The formulation as given here relies on the decomposition of the total displacement in the displacements
of the trivial state kU0 and the buckling displacements u

Fig. 5. Finite strip ± conventions and notation.
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Utot � Utot�x; g� � kU0�x� � u�x; g�; k � k�g�; �5:7�
with

U0�x�T � fÿe0x; v0 � m12�e0y; 0�gT
u � fu�x; y; g�; v�x; y; g�;w�x; y; g�gT:

We recall that the nominal axial strain e0 is assumed uniform throughout the panel, whereas the material
constant m12 may vary with (y). The latter property follows from the fact that di�erent (orthotropic) ma-
terials can be used for the construction of the panel cross-section. With the de®nitions for the buckling
displacements made in Section 4, the above expression can be speci®ed as

Utot �
ÿke0x

v0 � km12e0y
0

8<:
9=;� g

h�y� cos px
g�y� sin px
f �y� sin px

8<:
9=;

24 � 1

2
g2

q0x� h2�y� sin2px
g0�y� � g2�y� cos 2px
f0�y� � f2�y� cos 2px

8<:
9=;
35: �5:8�

This displacement ®eld generates an axial stress that we denote by

rtot � kr0�x; y� � �Drm�x; y; g� � z Drb�x; y; g��: �5:9�
Here Drm is the (averaged) membrane part and Drb the bending part of the redistribution of stresses due to
buckling.

We observe now that the total axial load Ftot acting at the ends ��L� of the panel must be in equilibrium
with the axial stresses rxtot integrated over the cross-section of the panel at each rib station; thus

Ftot �
Z

b

�krx0 � Drmx�L; y; g��he�y�dy

� k
Z

b

E11�y�e0he�y�dy �
Z

b

�Drmx�l; y; g��he�y�dy

� kF0 � DFb�g�: �5:10�
Here, he denotes the thickness of the plate element.

The above expression shows that, in general case, when no special conditions are imposed on u, we do
not end up with k being proportional to the total load that is acting on the panel. To enforce that k remains
proportional to the total load, we add the term q0x (part of the homogeneous solutions of Eq. (4.6)). By
adding this term in Eq. (5.8), we can impose the condition

DF �
Z

b

�Drmx�l; y; g��he�y�dy � 0: �5:11�

The redistribution of stresses Dr connected with the buckling displacements u is, here, thus constructed in
such a way that it forms a self equilibrating system (in axial direction). With this convention, the total load
Ftot is computed using the expression:

Ftot � k
Z

b

E11�y�e0he�y�dy: �5:12�

5.4. The load vs. end-shortening relation

The in-plane component (u) in the x-direction is given by

u�x; y� � ÿke0x� gh�y� cos px� 1
2
g2fq0x� h2�y� sin2pxg; p � kp=l k � integer; �5:13�

where the nominal strain e0 is de®ned as positive number. The average shortening e of the panel (de®ned as
a positive number for compression) is then obtained as
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ÿe � 1

b

Z
b

u�l;w� ÿ u�ÿl;w�
2l

dw � ÿke0 � 1

2
g2q0: �5:14�

The combination of Eqs. (3.31) and (5.14) allows us to derive the relations between k and e:

for k < kc; k � e
e0

;

for k > kc; k � kc � �eÿ kce0�k
��

cII

e0 k
��

cII ÿ q0

: �5:15�

The sti�ness of the panel before and after buckling is then characterized by

for k < kc;
dk
de
� 1

e0

;

for k > kc;
dk
de
� k

��
cII

k
��

cIIe0 ÿ q0

:

�5:16�

6. Examples and conclusion

6.1. Validation of the code

The validation of the PANBUCKPANBUCK program was carried out with the help of a number of classical problems
solved in the literature. We ®rst checked the code using well known examples for which analytical solutions
are available. Among these, we mention the results obtained by Koiter and van der Neut in connection with
their analysis of a hat-sti�ened panel (Koiter and Pignataro, 1976; van der Neut, 1976). In all these cases,
the solutions produced by our code matched the solutions presented in the literature in a perfectly satis-
factory manner. We will not review these examples in detail here, but instead, present, where the results of
the asymptotic method are directly compared with the results of a non-linear ®nite element analysis.

6.2. The example of a hat-sti�ener section

Consider the hat-sti�ener±skin section pictured in Fig. 6. We assume that the coupling of the two shell
sections is perfect so that the composite parts behave as one shell section with thickness equal to the sum of
the two parts. The hat and skin material is homogeneous and isotropic, with the parameter values given in
the ®gure. The section is cut from a wide panel with a large number of sti�eners (nst � 10). The distance
between the ribs is l � 390 mm.

For the boundary conditions along the longitudinal edges, we choose: v � 0; bx � 0 at one edge and
v(x)� constant, bx � 0 at the other. With this combination, the hat section may be seen to represent the
wide panel as a whole (for local buckling). The eccentricity between the mid surfaces of the single layer
parts of the cross-section and the mid surface of composite skin-hat parts will be ignored in this analysis.
This means that the shell section is modeled in the way it is pictured in the upper part of Fig. 5.

The details given above complete the description of the ®nite-strip model. For the ®nite-element model,
(Figs. 8a,b), we introduce a basic con®guration that can be used to check the in¯uence of the support
conditions at x � 0 as we will proceed to show. We take the sti�ener-skin section with length l and apply
along the longitudinal skin edges of the same boundary conditions that are used for the ®nite strip model.
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For the two transverse edges of this model, i.e., the edges cut by the planes Sÿ: x � ÿ�1=2�l and S�:
x � ��1=2�l, we enforce the conditions: by � bz � 0, together with the stipulation that the axial displace-
ments at these locations are given by u�ÿ�1=2�l; y� � Dl=2; u��1

2
�l; y� � ÿDl=2, where Dl is the end-

shortening of the model when it is under load. These edge conditions enforce the symmetry of the solutions
with respect to the ``moving'' planes S�ÿ: x � ÿ�1=2��lÿ Dl� and S��: x � ��1=2��lÿ Dl�, respectively. For
the suppression of the rigid body mode, we will consider two options. The ®rst corresponds to the elimi-
nation of the motion of an arbitrary node in vertical direction. This option renders the STAGSSTAGS model
equivalent to the ®nite strip model in terms of the possibility to represent modes of the type (5.8). However,
as an alternative, it is also possible to replace the last condition by a condition that mimics the support of
the ribs in the way we discussed in Section 4. This corresponds to the suppression of the normal dis-
placement w of the skin outside the hat-sti�ener area, see Fig. 8b, at the station x � 0. The latter variant
restricts a proper comparison between both models to cases, where the critical buckling mode exhibits an
uneven number of half waves measured over the length of the panel bay. However, this model will still
allow us to verify the conjectures that we made regarding the importance of the support conditions as an
in¯uence on the post-buckling solutions.

6.2.1. Finite strip analysis
The analysis of the ®nite-strip model was carried out as follows. We ®rst determined the spectrum of

buckling loads and corresponding modes in the range: pm � mp=l; m � 1±20. This spectrum, see also Fig.
7, reveals that the critical buckling load is given by P1�Pcr� 4.454 ´ 104 N with a mode with 12 half waves.
The second bifurcation load is given by P2� 4.485 ´ 104 N with 11 half waves, the next load is P3� 4.485 ´
104 N and has 13 waves, P4� 4.558 ´ 104 N with 14 half waves, etc. Global buckling with p � p=l of this
model takes place at Pglob� 19.144 ´ 104 N.

The post-buckling analysis was carried out using the critical mode 1. We note at this point that the single
mode post-buckling analyses can only have a limited range of validity because the ®rst six or seven bi-
furcation points for this panel are very closely spaced. In fact, closely spaced bifurcation points are a fore-
warning of the possibility of mode jumping phenomena to occur when the load is growing in excess of the
buckling load P1, (Riks et al., 1997). This means, among others that the initial post buckling solution is only
stable for P1 < P < P1 � DP , where DP is small in comparison of P1 (in this particular case it turns out that
DP � 0.3 P1). For the veri®cation of our code, this issue is not directly relevant, but we mention it nev-
ertheless to warn potential users for the possible pitfalls in the evaluation of its results.

Fig. 6. Hat section layout.
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6.2.2. Finite element analysis
The ®nite element model that we described earlier was constructed using the STAGSSTAGS code (Rankin et al.,

1998). With this model (and its variants), we carried out the following analyses. First, we determined the
critical-buckling load and corresponding mode of the model for the case l � 390 mm. After that, we
computed the bifurcation diagram using the path, following methods that are available in the STAGSSTAGS

program.
This analysis produced the following results: (i) the critical-buckling load and the corresponding mode,

(ii) the reduction of sti�ness after buckling at the ®rst bifurcation point. We were also able to determine the
secondary bifurcation point along the ®rst post-buckling state II, after which this state II becomes unstable
so that a mode jump will take place (Table 1).

Fig. 9 presents an image of the critical buckling mode for the model in the absence of support conditions
at x � 0, which also shows the mesh that was used. Fig. 10 gives STAGSSTAGS results in terms of the ``load vs. end-
shortening'' and ``load vs. normal displacement'' plots for this case. The key results of this and the previous

Fig. 8. Some details of the STAGSSTAGS model.

Fig. 7. Buckling load spectrum.
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Table 1

Hat-sti�ener, ®rst result

STAGSSTAGS panbuck

Pcr (N) 0:4474 10�5 0:4454 10�5

kcr 1.0045 1

Number of half waves 12 12
dK
dE

��
II
� ecr

kcr

dk
de

��
II

0.707 0.708

Fig. 10. Panel response according to STAGSSTAGS. (a) Load vs. end-shortening. (b) Load vs. normal displacement.

Fig. 9. The critical buckling mode (support conditions at x � 0 not enforced).
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®nite strip analysis are given in Table 1. We note here that the STAGSSTAGS result for the drop in sti�ness after
buckling was determined using the ®nite di�erence expression:

dK
dE

����
II

� Dlcr

kcr

dk
dDl

����
II

� Dlcr

kcr

k1 ÿ kcr

Dl1 ÿ Dlcr

�6:1�

in which Dl denotes the end-shortening of the model, k denotes the load-factor (normalized with respect to
the critical value produced by PANBUCKPANBUCK), and where the subscript 1 refers to the values that correspond to
the ®rst solution beyond the critical point (kcr;Dlcr).

6.2.3. The in¯uence of the support conditions
To evaluate the in¯uence of the support conditions on the behavior of the model, we also conducted a

buckling and post-buckling analysis with the STAGSSTAGS model, in the case that the support conditions de®ned
in Fig. 8b, are active. We already mentioned that with this modi®cation, the STAGSSTAGS model can no longer
admit buckling modes that are harmonic in the axial direction, see Eqs. (4.4) and (5.8) with an even number
of half waves m between the rib stations. The reason is that these modes, in terms of the components v and
w, cannot satisfy the symmetry conditions at the moving planes S�ÿ and S�� and the simple support con-
ditions x � 0 at the same time. Only (harmonic) modes with an uneven number of half waves m can satisfy
these requirements.

However, the STAGSSTAGS model can produce other types of modes, which exhibit an even number of half
waves, but which are no longer harmonic. This is what occurred in the present analysis. The critical
buckling mode in this case still has 12 half waves although there is now a slight modi®cation in shape of this
mode in comparison with the mode of the previous STAGSSTAGS case. The modi®cation occurs in the region of
the support at x � 0. We will not present the branching diagrams and the pictures of the modes for this case
because they are hardly di�erent from the previous ones. We only present here, in Table 2, the cardinal
results concerning the buckling load and post-buckling sti�ness computed by STAGSSTAGS (the PANBUCKPANBUCK results
remain unaltered but are included for convenience).

It is thus observed that the support conditions that mimic the presence of the rib stations have hardly
any e�ect on the outcome of the STAGSSTAGS analysis. This con®rms our conjecture regarding the e�ect of the rib
supports. It also illustrates how e�ective ®nite strip solutions are for this case.

6.2.4. Discussion
Of course, the post-buckling solution produced by PANBUCKPANBUCK is only a ®rst approximation. In the load

vs. end-shortening plot this approximate solution corresponds to a straight line. The STAGSSTAGS solution (Fig.
10a) shows how the ``actual'' post-buckling path deviates from the straight line. We can infer from the
di�erence between these two solutions how accurate the asymptotic method is in this case.

In agreement with our expectations described in Eq. (4.2). the STAGSSTAGS analysis con®rms that the neglect
of the support conditions in the construction of the post-buckling terms is justi®ed, at least in this particular
case of local buckling. Tentative investigations, which we will not further discuss here, have shown that also
in the case of global modes, n � 1, the post-buckling solution produced by PANBUCKPANBUCK remains reliable.

Table 2

Hat-sti�ener, second result

STAGSSTAGS panbuck

Pcr (N) 0:4485 10�4 0:4454 10�4

kcr 1.0078 1

Number of half waves 12 12
dK
dE

��
II
� ecr

kcr

dk
de

��
II

0.708 0.708
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Lack of space prevents us to go into a discussion of these cases here. We will return to them at another
place.

The post-buckling branch II, as computed by STAGSSTAGS (Fig. 10) becomes unstable at a point determined
by k � 1:324. At this bifurcation point, the panel will su�er a mode jump. The jump most probably ends at
a stable branch characterized by a mode with 14 half waves. A snap of this nature is rather mild and does
not result in the destruction of the panel. After further loading, this secondary stable post-buckling path
will become unstable again and another mode jump will occur, (we guess to a state with 16 half waves), and
so on. We did not investigate this response sequence here, because it takes considerable e�ort to analyze,
but we are rather con®dent that this is the global behavior we can expect (Riks et al., 1997). This obser-
vation implies that the usefulness of the present PANBUCKPANBUCK solution for n � 12 is limited to the load value of
k � 1:324. To what extent the ®nite strip solutions for the modes n � 14; n � 15, etc. can be used to
represent the states, the structure jumps to for values of k > 1:324 is a question that needs further inves-
tigation.

6.3. An example of a Z-sti�ened panel

We will conclude the discussion by showing another aspect of the possibilities that are o�ered by this
application of KoiterÕs post-bifurcation theory. In this case, we selected a panel that is 800 mm long and
13� 80 mm wide. It has a curvature of R � 3000 mm and is equipped with 13 Z-sti�eners. The geometry of
the sti�ener is given in Fig. 11. Along the longitudinal edges of the panel only the displacements in the
global z-direction are suppressed. Although the ®nite strips by themselves are ¯at prismatic elements, the
cylindrical parts of the panel can still be modeled by these strips in the same way that the ¯at STAGSSTAGS

quadrilateral elements are capable to model doubly curved shells.
The buckling analysis by PANBUCKPANBUCK reveals that the critical buckling mode of this panel has 12 half

waves in axial direction. This (local) mode is pictured in Fig. 12 covering one half of the panel length l. The
post-buckling analysis computes the post-buckling sti�ness at dK

dE

ÿ ���
II
� 0:73:

Fig. 11. Z-sti�ened panel, dimensions in mm.
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The example given here corresponds to a case, where it is not admissible to derive the basic charac-
teristics of the buckling and post-buckling behavior of the panel by simply reducing the problem to an
isolated sti�ener section. This is a conclusion that generally holds good for panels that do not have a high
degree of regularity in the layout of the cross-section. For such type of problems, the ®nite strip formu-
lation discussed here holds an advantage in comparison with methods that are based on averaging prin-
ciples.

6.4. Conclusion and recommendations

(i) The ®nite strip method is a fast method. The volume of the computations is relatively modest as
compared to the volume of computations that are connected with two-dimensional shell ®nite element
analyses. These characteristics explain why this method is useful in the preliminary design of wing box
panels (Stroud and Anderson, 1980) and why the present method is incorporated in the optimization code
for preliminary design PANOPTPANOPT (Arendsen and Wiggenraad, 1991; Arendsen, 1993).

(ii) The model that is developed here is expected to give accurate results within the scope of the as-
sumptions made. If not all assumptions are met, the results of the post-buckling analysis must be inter-
preted with care (see also the discussion in Section 4.2). The range of validity in terms of Dk � kÿ kc > 0 is
expected to be somewhat in the neighborhood of Dk < 0:5kc in the case of simple bifurcation, but it can
never be established before-hand as it depends on the problem at hand. It is always a good idea to cross
check the results, either by comparing them to classical solutions (when available) or by cross-checking it
with a ®nite element analysis. This is in any case a good practice, no matter what design process is used.

(iii) In this article, we avoided the question of how to deal with bifurcation points that are very close
together. This question can be important in the case that global buckling takes place together with some
local modes (Budiansky, 1974; Shridharan, 1983; Shridharan and Ashraf, 1986; Koiter and Pignataro,
1976; van der Neut, 1976). In PANBUCKPANBUCK, provisions for the multi-mode case have already been made (the
construction of the vij terms in that case) but more work is required to make this particular case operational
(Riks, 1989; Arendsen, 1989).

(iv) Koiter and Pignataro (1976) developed closed form solutions for the interaction of local and global-
buckling modes, which are de®ned by integrals that involve the buckling modes and modi®cation terms. As
these terms are produced by our code, i.e. the terms ac and v, this ``amplitude modulation'' approach can
easily be incorporated.

(v) The perturbation solutions that are presented here are developed at the bifurcation point determined
by kc. Improvement of the validity of the expansion can be obtained if the perturbation is carried out at
points of the fundamental state I that vary with the value of the load k, e.g. (Koiter, 1945, 1976). It is
comparatively easy to change the formulation of the present coding to account for this modi®cation. The

Fig. 12. Initial post-buckling state of the panel.
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second order term v is then dependent on the load intensity k and the calculation must then be carried out
pointwise, i.e., for a number of values of k.

(vi) There may be a need to include imperfections of the initial panel shape into the formulation, in
particular in the multi-mode case. The way this can be done is discussed in Appendix B.
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Appendix A. Notation

The notation employed in Section 2 and 3 was introduced by Koiter (1945), see also Koiter (1976). As
can be deduced from de®nitions (2.3) and (3.1), the potential energy P �u� is a surface integral, the integrand
of which is a sum of products of the arguments, i.e., the derivatives: u0; v0;w0; u

�
; v
�
;w
�
;w00;w0�;w

��
. (We use here

the notation: ( )0 � o=ox; � �� � o=oy, etc.). The lowest degree of these products in P �u� is two, the highest
degree is 4. If we denote the arguments by zi�i � 1; 2; 3; . . . ; 9� so that z1 � u0; z2 � v0, etc., the terms
P2; P3; P4 in expansion (3.2) can be written in the form:

P2�u� � P 0�u� ÿ kP 0�u� �
Z Z

�RC0
2

ijzizj�dS ÿ k
Z Z

�RC02
ijzizj�dS;

P3�u� �
Z Z

�RCijh
3 zizjzh�dS; �A:1�

P4�u� �
Z Z

�RCijhk
4 zizjzhzk�dS:

The coe�cients C0
2

ij;C02ij;Cijk
3 ;C

ijkh
4 �i; j; h; k� � 1; 2 . . . ; 9 are constants. These polynomial forms have the

following properties:
If u � lv, where l is a scalar,

P2�lv� � l2P2�v�; P3�lv� � l3P3�v�; P4�lv� � l4P4�v�: �A:2�
If u is given by the sum u � v� w, we can write

P2�v� w� � P2�v� � P11�v;w� � P2�w�;
P3�v� w� � P3�v� � P21�v;w� � P12�v;w� � P3�w�;
P4�v� w� � P4�v� � P31�v;w� � P22�v;w� � P13�v;w� � P4�w�;

�A:3�

which are expansions that are similar to the binomial expansion of the product �a� b�n; n � 2±4.
For example, the forms P31�v;w�; P21�v;w�, etc. are given by

P31�v;w� � 4

Z Z
�RCijhk

4 z1
i z1

j z1
hz2

k �dS; P21�v;w� � 3

Z Z
�RCijh

3 z1
i z1

j z2
h�dS; etc:; �A:4�

where v � �z1
1; z

1
2; . . . ; z1

9� and w � �z2
1; z

2
2; . . . ; z2

9�. The factors 4, 3, etc. follow from the binomial coe�cient,
n

nÿm

ÿ � � 4!
3!1!
� 4; 3!

2!1!
� 3, etc. Please note that
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P31�v;w� � P13�w; v�; P21�v;w� � P12�w; v�; etc: �A:5�
If v � w in Eq. (A.4)

P31�v; v� � 4

4ÿ 1

� �
P4�v� � 4P4�v�; P21�v; v� � 3

3ÿ 1

� �
P3�v� � 3P3�v�; etc: �A:6�

Also, if, in Eq. (A.4), v � a� b, then follows:

P31�a� b;w� � P31�a;w� � P211�a; b;w� � P121�a; b;w� � P31�b;w�: �A:7�
If in Eq. (A.7) a � b � w, then

P211�a; a; a� � 2P22�a; a� � 2
4

4ÿ 2

� �
P4�A� � 12P4�a�

and so on.

Appendix B. Imperfections

The governing equations are generated by the energy functional:

P �u; k� � ÿk
Z

S
NTl2�u�dS � 1

2

Z
S
cTCcdS � 1

2

Z
S
jTBjdS: �B:1�

The following listing explains the signi®cance of the symbols used:

u the displacement in the buckled state measured with respect to the basic state I
k the load factor
NT

0 the pre-buckling stress ®eld (nominal values)
I2�u� quadratic part of the membrane strain measures used
c the mid-surface, Green Lagrange strains
j the changes of curvature
C;B the membrane and bending sti�ness matrix, respectively
S the area of integration

This expression was derived with respect to the geometry of the basic state I � �ÿkU0� but it can with a
good approximation, also be regarded to be derived with respect to the geometry of the undeformed state.
We will depart from the last supposition, because that point of view will simplify the discussion.

When there are imperfections, the undeformed state is given by 0� lw0. If the structure undergoes a
displacement u under a load kF, the strain measures for the new state �0� lw0 � u� are given by the dif-
ference between the metric tensors of state �0� lw0 � u� and �0� lw0�, thus,

c�ij � 1
2
fgij ÿ g0

ijg �B:2a�
or in vector form:

c� � 1
2
fgÿ g0g �B:2b�

where superscript �0� refers to the undeformed state: �0� lw0�. It can be veri®ed (by inspection) that this
leads to

c� � c�lw0 � u� ÿ c�lw0� � c�u� � l11�lw0; u�; �B:3�
where c corresponds to the Green±Lagrange strain measures and c is given by c � l1�u� � l2�u�, see Eq.
(2.13). The operators l1 and l2 are de®ned by Eq. (2.3 and 2.4), and l11�u; v� is the bilinear form that is
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derived from l2. It is noted that the curvature changes j are linear operators and therefore not a�ected by
the geometry change.

The modi®cation of the energy functional that results, if we account for initial imperfections, follows if
we insert lw0 � u in Eq. (B.1) in place of u, and c� given by Eq. (B.3) in place of c. This leads to

P ��u; k� � P�u; k� � lkQ1�u� � lQ3�u� � l2Q2�u� �B:4�
with P�u; k� given by Eq. (B.1) and:

Q1�u� � ÿ
Z

S
NT

I l11�w0; u�dS;

Q2�u� �
Z

S
cT�u�Cl11�w0; u�dS; �B:5�

Q3�u� � 1

2

Z
S

lT
11�w0; u�Cl11�w0; u�dS:

Usually, the imperfections are studied only for small values of l. In this case, the most important con-
tribution leading to the modi®cation is given by the ®rst term lkQ1�u�. This follows, because the ®rst in-
tegral is of the order of magnitude lkgjQ1�uc�j, whereas the remaining two integrals are of the order of
magnitude l2g2jQ2�uc�j and lg3jQ3�uc�j. Thus, for small amplitudes of the buckling displacements and small
imperfections i.e., jgj � 1 and jlj � 1, it is reasonable to neglect the remaining two contributions. With the
last observation, the energy expression is brought to the form:

P ��u; k� � P�u; k� � lkQ1�u�: �B:6�
According to the general theory (Koiter, 1970, 1976), we can now obtain the behavior of the imperfect
panel using the data that we obtained for the perfect case, i.e., the solution

u � acg� 1
2
vg2: �B:7�

Substitution of Eq. (B.7) into Eq. (B.6) yields

P ��g; k� � P�acg� 1
2
vg2; k� � lk�Q1�acg� � 1

2
g2Q1�v��
- - - - - - - -

; �B:8�

where the underlined term can be neglected. The equilibrium equation that governs the imperfect panel then
follows from the requirement,

oP ��g; k�
og

� 0:

This ®nally leads to the imperfect bifurcation equation, which after neglect of the terms of order g4 and
higher can be written as

lkQ1�ac� � 2�kc ÿ k�P 02�ac�g� 4fP4�ac� ÿ 1
4
�P 0

2 �v� ÿ kcP 02�v��gg3 �O�g4� � 0: �B:9�
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